Alternate Interior Angles Theorem: Two alternate interior angles are congruent if and only if they are formed by a set of parallel lines and a transversal (See Diagram 1)

Corresponding Angles Postulate: Two corresponding angles are congruent if and only if they are formed by a set of parallel lines and a transversal (See Diagram 2)

Same Side Interior Angles Theorem: Two same side interior angles are supplementary if and only if they are formed by a set of parallel lines and a transversal (See Diagram 3)

These theorems can be used to prove congruent or supplementary angles, but also can be used to prove lines are parallel if a pair of congruent angles is known

Diagram 1:

Diagram 2:

Diagram 3:

Vertical Angles Theorem: Two angles are congruent if they are vertical angles (See Diagram 3)
Linear Pair Postulate: Two angles are supplementary if they are adjacent and form a straight line (See Diagram 4)

Reflexive Property: An angle or side is always congruent to itself (See Diagram 5). Used when an angle or side is shared by two triangles

Diagram 3:

Diagram 4:

Diagram 5:

Substitution Property: If two sides or angles are congruent, one can be replaced by the other when make a new statement

Transitive Property: If two sides or angles are congruent to the same side or angle, then they are congruent to each other
$W X \cong W Y$, and $W Y \cong W Z$,
so then $\overline{W X} \cong \overline{W Z}$
Diagram 6:

Definition of Midpoint: A midpoint divides a segment into two congruent smaller segments (See Diagram 7)

Definition of Perpendicular: An angle formed by perpendicular lines measures 90 degrees (See Diagram 8)

Definition of Perpendicular Bisector: Angles formed by the bisector measure 90 degrees and the segment bisected is divided into two congruent smaller segments (See Diagram 9)

Definition of Angle Bisector: An angle bisected by a segment, line, or ray is divided into two congruent smaller angles (See Diagram 10)

These are commonly used in various proofs

Diagram 7:

Diagram 8:

Diagram 9:

$\overline{D B}$ is the perpendicular bisector of $\overline{A C}$
Diagram 10:

$\overline{B D}$ bisects $\angle A B C$

Definition of Isosceles Triangle: A triangle with two sides that are congruent to each other
Base Angle Theorem: If a triangle is isosceles, then it has two angles that are opposite the congruent sides in which are also congruent

These two are often used together in a proof that involves an isosceles triangle

Diagram 11:

$\triangle X Y Z$ is an isosceles triangle

